A lower bound for the second largest Laplacian eigenvalue of weighted graphs
نویسندگان
چکیده
منابع مشابه
A sharp upper bound on the largest Laplacian eigenvalue of weighted graphs
We consider weighted graphs, where the edge weights are positive definite matrices. The Laplacian of the graph is defined in the usual way. We obtain an upper bound on the largest eigenvalue of the Laplacian and characterize graphs for which the bound is attained. The classical bound of Anderson and Morley, for the largest eigenvalue of the Laplacian of an unweighted graph follows as a special ...
متن کاملOn Cheeger-type inequalities for weighted graphs
We give several bounds on the second smallest eigenvalue of the weighted Laplacian matrix of a finite graph and on the second largest eigenvalue of its weighted adjacency matrix. We establish relations between the given Cheeger-type bounds here and the known bounds in the literature. We show that one of our bounds is the best Cheeger-type bound available.
متن کاملThe Weighted Spectrum of the Universal Cover and an Alon-boppana Result for the Normalized Laplacian
We provide a lower bound for the spectral radius of the universal cover of irregular graphs in the presence of symmetric edge weights. We use this bound to derive an Alon-Boppana type bound for the second eigenvalue of the normalized Laplacian.
متن کاملOn Complementary Distance Signless Laplacian Spectral Radius and Energy of Graphs
Let $D$ be a diameter and $d_G(v_i, v_j)$ be the distance between the vertices $v_i$ and $v_j$ of a connected graph $G$. The complementary distance signless Laplacian matrix of a graph $G$ is $CDL^+(G)=[c_{ij}]$ in which $c_{ij}=1+D-d_G(v_i, v_j)$ if $ineq j$ and $c_{ii}=sum_{j=1}^{n}(1+D-d_G(v_i, v_j))$. The complementary transmission $CT_G(v)$ of a vertex $v$ is defined as $CT_G(v)=sum_{u in ...
متن کاملEla a Lower Bound for the Second Largest Laplacian Eigenvalue of Weighted Graphs
, where deg(vi) is the sum of weights of all edges connected to vi. The signless Laplacian matrix Q(G) is defined by D(G) + A(G). We denote by 0 = λ1(G) ≤ λ2(G) ≤ · · · ≤ λn(G) the eigenvalues of L(G), and by μ1(G) ≤ μ2(G) ≤ · · · ≤ μn(G) the eigenvalues of Q(G). We order the degrees of the vertices of G as d1(G) ≤ d2(G) ≤ · · · ≤ dn(G). Various bounds for the Laplacian eigenvalues of unweighte...
متن کامل